Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Shujiang Tu,* Jinpeng Zhang, Xiaotong Zhu, Jianing Xu and Qian Wang

Department of Chemistry, Xuzhou Normal University, Xuzhou 221116, People's Republic of China

Correspondence e-mail: laotu2001@263.net

Key indicators

Single-crystal X-ray study
$T=193 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.068$
$w R$ factor $=0.143$
Data-to-parameter ratio $=17.3$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

2-Amino-7,7-dimethyl-5-oxo-4-phenyl-1,4,5,6,7,8-hexahydroquinoline-3-carbonitrile hemihydrate

The title compound, $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$, was synthesized by the reaction of benzaldehyde with malononitrile, dimedone and ammonium acetate under microwave irradiation. X-ray analysis reveals that in both crystallographically independent molecules in the asymmetric unit, the dihydropyridine rings adopt distorted boat conformations and the cyclohexene rings adopt envelope conformations.

Comment

The design and synthesis of 1,4-dihydropyridines has attracted much attention over the past 30 years due to the calcium antagonist effect they display (Mayler, 1989). The establishment of the pharmacological action as drugs for the treatment of cardiovascular diseases such as angina, hypertension or arrhythmia was mainly based on the structural studies carried out by X-ray diffraction on differently substituted 1,4-dihydropyridines (Triggle et al., 1989). In this paper, we report the crystal structure of the title compound, (I).

$\cdot 0.5 \mathrm{H}_{2} \mathrm{O}$
(I)

The asymmetric unit of (I) contains two molecules of the quinoline derivative and one water molecule (Fig. 1). The

Figure 1

The asymmetric unit of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme. H atoms have been omitted.

Received 17 February 2005
Accepted 8 March 2005
Online 18 March 2005

Figure 2
The molecular packing of (I), viewed along the a axis. Dashed lines indicate hydrogen bonds.
corresponding bond distances and angles agree with each other (Table 1). In one molecule, the pyridine ring adopts a distorted boat conformation, with atoms N1 and C3 deviating from the $\mathrm{C} 1 / \mathrm{C} 2 / \mathrm{C} 4 / \mathrm{C} 5$ plane by 0.088 (3) and 0.247 (3) \AA, respectively [atoms N 4 and C 21 deviate from the $\mathrm{C} 19 / \mathrm{C} 20$ / C22/C23 plane by 0.070 (3) and 0.257 (3) A, respectively, in the other molecule]. In both molecules, the cyclohexene rings adopt envelope conformations; atom C 8 deviates from the $\mathrm{C} 1 /$ $\mathrm{C} 2 / \mathrm{C} 6 / \mathrm{C} 7 / \mathrm{C} 9$ plane by 0.638 (3) \AA and atom C26 deviates from the C19/C20/C24/C25/C27 plane by 0.652 (3) \AA. The dihedral angle between the $\mathrm{C} 1 / \mathrm{C} / \mathrm{C} 4 / \mathrm{C} 5$ plane and the $\mathrm{C} 10-$ C 15 benzene ring is $83.58(7)^{\circ}$ [86.29 (8) ${ }^{\circ}$ in the other molecule]. The crystal packing shows that intermolecular $\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{O}, \mathrm{O}-\mathrm{H} \cdots \mathrm{N}, \mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds (Table 2) form a three-dimensional network (Fig. 2).

Experimental

Compound (I) was prepared by the reaction of benzaldehyde (1 mmol) with malononitrile (1 mmol), ammonium acetate (3 mmol) and dimedone (1 mmol) under microwave irradiation (yield 85%; m.p. $553-554 \mathrm{~K}$). Single crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O} \cdot 0.5 \mathrm{H}_{2} \mathrm{O} \\
& M_{r}=302.37 \\
& \text { Monoclinic, } P 2_{1} / c \\
& a=9 \\
& a=9.1652(13) \AA \\
& b=14.716(2) \AA \\
& c=23.596(3) \AA \\
& \beta=93.918(4) \AA \\
& V=3175.1(7) \AA^{\circ} \\
& Z=8
\end{aligned}
$$

Data collection

Rigaku Mercury diffractometer ω scans
Absorption correction: multi-scan (Jacobson, 1998)
$T_{\text {min }}=0.962, T_{\text {max }}=0.984$
35240 measured reflections 7266 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.068$
$w R\left(F^{2}\right)=0.143$
$S=1.17$
7266 reflections
419 parameters
H atoms treated by a mixture of independent and constrained refinement

> 5982 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.0043$
> $\theta_{\max }=27.5^{\circ}$
> $h=-11 \rightarrow 11$
> $k=-19 \rightarrow 19$
> $l=-25 \rightarrow 30$

$$
\begin{gathered}
w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0465 P)^{2}\right. \\
+1.3409 P] \\
\text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }=0.001 \\
\Delta \rho_{\max }=0.22 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=-0.28 \mathrm{e} \AA^{-3}
\end{gathered}
$$

Table 1
Selected bond lengths (\AA).

O1-C6	$1.237(2)$	N5-C34	$1.155(3)$
O2-C24	$1.233(2)$	N6-C23	$1.352(2)$
N1-C1	$1.367(2)$	C1-C2	$1.353(3)$
N1-C5	$1.380(2)$	C4-C5	$1.363(3)$
N2-C16	$1.154(2)$	C4-C16	$1.411(3)$
N3-C5	$1.343(2)$	C19-C20	$1.358(3)$
N4-C19	$1.366(2)$	C22-C23	$1.367(3)$
N4-C23	$1.378(3)$	C22-C34	$1.413(3)$

Table 2
Hydrogen-bonding geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{O}^{\mathrm{i}}$	0.88	2.14	$2.892(2)$	144
$\mathrm{~N} 3-\mathrm{H} 3 A \cdots \mathrm{~N} 2^{\mathrm{ii}}$	0.88	2.15	$2.990(2)$	159
$\mathrm{~N} 3-\mathrm{H} 3 B \cdots \mathrm{O}^{\mathrm{i}}$	0.88	2.14	$2.927(2)$	148
$\mathrm{O}^{\mathrm{H}}-\mathrm{H} 3 C \cdots \mathrm{O} 1$	$0.85(1)$	$2.02(2)$	$2.763(2)$	$146(3)$
$\mathrm{O}^{\mathrm{H}}-\mathrm{H} 3 D \cdots \mathrm{~N}^{\text {iii }}$	$0.84(1)$	$2.16(2)$	$2.935(3)$	$152(3)$
$\mathrm{N} 4-\mathrm{H} 4 \cdots \mathrm{O}^{\mathrm{i}}$	0.88	1.87	$2.744(2)$	174
$\mathrm{~N} 6-\mathrm{H} 6 B \cdots \mathrm{O}^{\mathrm{i}}$	0.88	2.09	$2.911(2)$	156

Symmetry codes: (i) $1-x, y-\frac{1}{2}, \frac{1}{2}-z$; (ii) $-x, 1-y, 1-z$; (iii) $2-x, \frac{1}{2}+y, \frac{1}{2}-z$.
Water H atoms were located in a difference Fourier map and were refined isotropically, with $\mathrm{O}-\mathrm{H}$ and $\mathrm{H} \cdots \mathrm{H}$ distance restraints of 0.84 (1) and 1.37 (2) A., respectively. All other H atoms were placed in geometrically idealized positions $(\mathrm{N}-\mathrm{H}=0.88 \AA$ and $\mathrm{C}-\mathrm{H}=$ $0.95-1.00 \AA$) and allowed to ride on their parent atoms, with the $U_{\text {iso }}(\mathrm{H})$ values set at $1.5 U_{\text {eq }}(\mathrm{C})$ for the methyl H atoms and at 1.2 $U_{\text {eq }}(\mathrm{C})$ for other H atoms.

Data collection: CrystalClear (Rigaku, 1999); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC, 20002003); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

We thank the National Natural Science Foundation of China (No. 20372057), the Open Foundation of Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry and Chemical Engineering, Suzhou University (No. JSK011) and the Key Laboratory of Biotechnology for

organic papers

Medicinal Plants of Jiangsu Province (No. 01AXL 14) for financial support.

References

Jacobson, R. (1998). Private communication to the Rigaku Corporation, Tokyo, Japan.

Mayler, W. G. (1989). Calcium Antagonist. London: Academic Press.
Rigaku (1999). CrystalClear. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2000-2003). CrystalStructure. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Triggle, D. J., Langs, D. A. \& Jamis, R. A. (1989). Med. Res. Rev. 9, 123-180.

